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INTRODUCTION

The purpose of this thesis is to compare the fourth~order Runge-Kutta
numerical integration technique with two of Dr. E. B. Shanks' numerical
integration formulas in a mathematical model used for computing rigid body,
first-stage trajectories of a Saturn space vehicle. The scope of the problem is
to describe the mathematical model and to present a derivation of the differen-
tial equations of motion which it comprises; to establish a basis for comparing
the integration techniques; and to generate sufficient comparison data to
establish which integration technique is the most practical to use in this model
from a standpoint of computer run time and accuracy.

As an employee of the National Aeronautics and Space Administration,
the author was required to develop a computer program for simulating the
first-stage flight of a Saturn space vehicle. The resulting program requires
that six first-order and three second-order differential equations be numeri-
cally solved to predict the translational and rotational motion of a space
vehicle. An efficient integration technique had to be chosen that would provide
a solution within the accuracy of the data which describe the vehicle dynamic
response characteristics. In a search for the most acceptable integration

technique, the fourth-order Runge-Kutta formula and two of Dr. E. B. Shanks'



integration formulas were each used in the program to compute the first-stage
trajectory of a typical Saturn vehicle. Comparative data were generated for
each formula over a range of integration step sizes. These data are analyzed
in Chapter V.

The first four chapters define the mathematical model in which the
integration formulas are compared. This model consists of several smaller
models that simulate the vehicle subsystems and the physical properties of the
earth., These subsystems and the earth's physical characteristics are
described in Chapter I. The different coordinate systems to which the model
refers motion and the related transformations are defined in Chapter II, and
the differential equations of motion are derived in Chapter III. In Chapter IV,
a definition of the mathematical model is completed with a description of the

forces and moments that act upon a space vehicle during flight.



CHAPTER 1

SATURN VEHICLE SUBSYSTEMS AND PHYSICAL PROPERTIES

OF THE EARTH TO BE SIMULATED

In order to design and build an extremely complex and expensive vehicle
such as the Saturn V, a means of simulating or predicting how a space vehicle
with specific subsystems and dynamic characteristics will react during actual
flight is mandatory. To this end, mathematical models are developed for each
subsystem and then combined into a total model of the vehicle. Models of the
earth's shape, gravity field, and atmosphere are merged with the vehicle
model to establish a two-body system. The total model is then programmed on
an electronic computer and used for predicting the response of a vehicle to
various atmospheric conditions and vehicle tolerances.

The Saturn V subsystems that guide and control the vehicle will be
described first. A knowledge of these subsystems and their functions is
necessary before a model can be developed to simulate them.

In this paper the terms navigation, guidance, and control are defined
as follows:

Navigation is the determination of the vehicle's present position and

velocity from measurements made onboard the vehicle.



Guidance is the computations of maneuvers necessary to achieve the

desired flight path.

Control is the execution of the guidance maneuver by controlling the

direction of part of the vehicle's thrust.

The Saturn V launch vehicle is guided during powered flight by naviga-
tion, guidance, and control equipment located in the Instrument Unit (IU). An
inertial platform is used to provide three orthogonal space-stabilized directions
for acceleration and attitude measurements. A launch vehicle digital computer
(LVDC) solves guidance equations, and an analog flight control computer
executes flight control functions. Analog signals are converted to digital

numbers and vice versa by means of a launch vehicle data adapter (LVDA).

The vehicle-fixed coordinate system and the Saturn sign convention for
control variables are presented in Figure 1. Rotational motion about the Xm
axis is called roll motion, rotational motion about the Ym axis is called
pitch motion, and rotational motion about the Zm axis is referred to as yaw
motion.

Figure 2 presents the Saturn V inertial platform configuration. The
gimbal system allows the vehicle to rotate freely without disturbing the gyro-
stabilized inertial gimbal. An orthogonal, right-handed, space-fixed coordi-
nate system (X, Y, Z) is established by the input axes of three single-degree-~
of-freedom gyroscopes. Acceleration and attitude measurements are taken
with respect to this coordinate system. Three integrating accelerometers,

mounted on the platform's inertial gimbal, measure the three components of
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velocity. Vehicle attitude is measured by resolvers located at the gimbal
pivot points.

The three angles measured by the inertial platform resolvers are
classically known as Eulerian angles, a discussion of which should aid in
understanding the function of the platform.

Eulerian angles evolved from the problem of describing the orientation
of a rigid body that is free to turn about a point 0. One solution would be to
assign the coordinates of two particles in the body, not on the same line
through 0. Because this method involves the use of six parameters that cannot
be varied independently, it is rejected. A much simpler method is to define
the orientation of the body with respect to a reference frame by the use of three
Eulerian angles.

Figure 3 shows two orthogonal right-handed triads (X, Y, Z) and

X ,Y , Zm) with their origins at point 0. The triad (Xm, Y

, Z_ ) 1is
m’ “m m

m
fixed in a rigid body that is free to turn about 0, and the triad (X, Y, Z)
serves as a frame of reference. Assuming that the (Xm, Ym’ Zm) triad
initially coincides with the reference triad, it can be revolved to the orienta-
tion shows in Figure 3 by the three following right~hand rotations.

1. First rotate about Y through (pp . This brings the movable triad

(X , Y , Z ) into coincidence with (X', Y, Z").
S m’ Tm’ m

2. Next, rotate about Z' through ¢ . This brings (X , Y , Z )
y m’ “m’ "m

into coincidence with (Xm, Y', Z").
3. Finally, rotate about Xm through @ This brings

(X , Y ., Z ) into the final position.
m’ m’ Tm



EULERIAN ANGLES
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Note that all possible positions of the body can be obtained by assigning
values to , , and in the ranges 0 = <2r, 0= = 7, and
(Pp <Py P g <Pp <Py
=
0= ¢, = 2T,
The symbols used in the discussion of Eulerian angles were chosen to
coincide with those used in Figures 1 and 2., That is, the (X, Y, Z) triad is

the one established by the vehicle inertial platform and the (Xm, Y ,Z )

m’ m
triad corresponds to the vehicle—fixed triad in Figure 1. An inspection of

Figure 2 reveals that the Eulerian angles qpp » ¥ @, are precisely the

y
angles measured by the inertial platform resolvers.

Attitude control is achieved during the S-IC stage of powered flight by
gimbaling or deflecting the stage's four outboard engines (engines { through 4
in Figure 1). Each of these four engines has two hydraulic actuators for
gimbaling the engine about its stage attach point. To determine the amount
these engines are to be gimbaled, the LVDC compares the instantaneous
vehicle attitude with the attitude computed by the guidance scheme. Attitude
error signals (z/)p, zpy, zpr) are derived from the difference between the
platform gimbal angles ((pp, (py, cpr) and the desired attitude angles
(xp y xy, xr) . The vehicle angular velocities about the Xm’ Ym, and Zm
axes are measured by three rate gyroscopes located in the IU. In the flight
control computer, the signals from the rate gyroscopes (d)p, d)y , d;r) and
the attitude error signals are filtered, multiplied by a gain factor, and then
combined to generate the control commands for the engine actuators. The

attitude error equations and the control laws for combining the filtered attitude

errors and vehicle angular rates are presented in Chapter IV.



During the S-IC stage of flight, the vehicle must execute pitch, yaw,
and roll maneuvers. A yaw maneuver during the first critical seconds of
flight guides the vehicle away from the launch umbilical tower. The Zm axis
is aligned along the flight azimuth by the roll maneuver. The pitch maneuver
is designed to guide the vehicle along a flight path that results in minimum
aerodynamic structural loading. This maneuver allows the vehicle to build a
component of velocity tangent to the earth's surface as it gains altitude. All
three maneuvers are preprogrammed in the LVDC as time-dependent poly-
nomials.

The LVDC contains a closed-loop guidance scheme for providing
guidance commands during the S-II and S-IVB stages of powered flight. This
scheme determines attitude commands from the components of position and
velocity of the vehicle center of gravity (CG) relative to a space-fixed coordi-
nate system orientated as the (X, Y, Z) platform coordinate system. Initial
velocity of the vehicle because of the earth's rotation and the platform velocity
from the integrating accelerometers are algebraically summed by the LVDC
to obtain space-fixed velocity of the vehicle. Position is determined by
integrating the space-fixed vehicle velocity.

With the description of the major vehicle subsystems complete, a
presentation of the models of the earth's shape, motion, gravity field, and
atmosphere can now be given. The standard model for the earth's shape is
known as the Fischer Ellipsoid, a model which considers the earth to be an

elliptical spheroid (Figure 4). The intersection of the earth and a plane that
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contains the earth's polar axis is an ellipse; the intérsection of the earth and
a plane that is perpendicular to the polar axis is a circle.

The only motion of the earth that will be considered is rotational; that
is, the center of the earth will be assumed fixed in space with the earth
rotating about its polar axis. Translation of the earth about the sun and
precession of the earth's polar axis during the year have no significant effect
on the motion of a space vehicle with respect to the earth.

A Newtonian potential function is used to predict the magnitude and
direction of the earth's gravity at any point above the earth's surface. The
oblate potential of the earth is assumed to contain the second, third, and
fourth spherical harmonics. A discussion of this potential is lengthy and will
not be presented here. A complete treatment of the subject is given in Chapters
I and II of Reference 1.

A model reference atmosphere for Cape Kennedy, Florida (Reference
2), which provides atmospheric information, is based on annual median values
of measured atmospheric parameters. Multisegment polynomials define each

atmospheric parameter as a function of altitude.
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CHAPTER 1I
REFERENCE COORDINATE SYSTEMS AND TRANSFORMATIONS

In order to determine the motion of a vehicle with respect to the
rotating earth, six reference three-dimensional coordinate systems are used.
Each system is defined to be right-handed and orthogonal to simplify computa~-
tion. Rotational motion of a vehicle is computed in the vehicle coordinate
system (Xm, Ym’ Zm) defined in Figure 2. The other five systems consist
of two earth-fixed and three space-fixed systems. Here, the terms "space-
fixed" and "earth-fixed' refer to coordinate systems that have constant orien-
tation and position with respect to the solar system and the earth, respectively.
The three space-fixed systems (Figure 5) are referred to as the surface triad
(XS, Ys’ ZS), the earth-centered triad _(XC, YC, Zc), and the equatorial
triad (U, V, W) . The two earth-fixed systems (Figure 6) are referred to
as the launch-point triad (Xe, Ye’ Ze) and the earth-equatorial triad
(Ue, Ve’ We) .

At the instant the vehicle inertial platform is released, the origin of
the (Xs’ Ys’ ZS) triad is located at the launch point. As time passes, the

surface of the earth moves beneath the (XS, Ys’ Zs) origin because of the

13
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earth's rotation. This system is defined to have the same orientation as the
(X, Y, Z) space-fixed triad established by the inertial platform (Figure 2).
At release, the inertial platform X axis is aligned to the local vertical; the

Z axis is tangent to the earth's surface at the launch site and lies in the flight
plane; and the Y axis forms a right-hand system. The (XS, Ys’ ZS) triad
is defined in this manner to simulate the function of the vehicle inertial
platform.

The earth-centered triad (Xc, Yc’ Zc) has the same orientation as
the surface triad; its origin is located at the center of the earth as the name
implies. Some of the initial conditions and certain trajectory parameters are
computed with respect to this system.

A second earth-centered triad (U, V, W), the equatorial system, is
defined to simplify computations that involve the earth's rotational velocity.
The U axis, which is directed along the earth's rotational velocity vector,
passes through the North Pole and is perpendicular to the equatorial plane.
At the instant the vehicle inertial platform is released, the W axis lies in the
plane of the launch meridian.

One earth-fixed triad (Xe, Ye’ Ze) is used by the model for comput-
ing motion of the vehicle with respect to the launch point (Figure 6). This
triad has its origin at the launch site and is coincident with the (XS, Ys’ ZS)
triad at the instant the vehicle platform is released.

A second earth-fixed triad (Ue, Ve’ We) has its origin at the center

of the earth and is coincident with the (U, V, W) triad at platform release.

16



This sy-stem is used in deriving the transformation from the (Xs, Ys’ ZS)
system to the (Xe, Ye’ Ze) system.

Since the objective of the total model is to determine the position and
orientation of a vehicle at any time in flight in different coordinate systems,
a procedure for transforming the coordinates of a vector from one triad to
another is mandatory. This procedure can be established by developing a
transformation between each pair of triads. A transformation is determined
by the right-hand rotations required to carry the first triad to the same
orientation as the second triad. Right-hand rotations are represented by
3 x 3 matrices.

Three basic right-hand rotations occur frequently throughout this paper.

The transformations for these rotations follow:

[ 1 0 0 j
[6]1 = 0 cos @ sin @
0 -sin @ cos 6
[ cos 6 0 -sin 9_
[6] = 0 1 0
y
sin 9 0 cos 6
[(cos 6 sing 0]
[6]Z = |-sin g cos f 0
0’ 0 1
Here, [6]X is the transformation for a right-hand rotation about the X axis

through an angle 6 ; [9]y is the transformation for a right-hand rotation

about the Y axis through an angle § ; and is the transformation for a

(61,
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right-hand rotation about the Z axis through an angle 8 . An inspection of
Figure 7 makes a derivation of these transformations trivial. All three
transformation are orthogonal since [O]iT[O]i = [(B]i[Q]iT = [I] , f{for
i=x,y, z where [I] is the identity matrix. Hence, the transpose equals
the inverse. This fact will be used extensively throughout this paper. All
of the transformations requiréd by the model will be combinations of these
three basic ones.

Two rotations are required to align the surface triad with the equatorial
triad. A right-hand rotation about the Xs axis through the angle AZ will
carry the ZS axis into the launch meridian plane (Figure 5). Then a negative
right-hand rotation about the new YS axis through the angle <% - (p0> will

complete the alignment. Hence,

S
v e B L % - 5] [ %
) (2-1)
and
X - [AZ]XT |:<p0 - %]:ﬁ . (2-2)

Since the surface triad and the earth-centered triad have the same orientation,

the above transformation will apply there also. This is

L=
N
[¢]

18



X X
y' | = [8] |y
P =Prov o1 1 X
(x,y,2) " "(x',y, z") z z
Zl
6 o 7
Y=Y'
: A
Y - Pix,y,2) = P(xyy, 2')
Y ;
xl
8 X
x' X
9 v - [a]y y
Y4 \ z z
Z
=2
P(X,Y.Z)=P(X',y',z')
.(VY'
9$Y
ol e, |
y'|= |8 y
7! Y4 7
¢]
x 1
X

FiG. 7. TRANSFORMATIONS FOR RIGHT-HAND ROTATIONS
19



and

X - [AZ]T [% - %] T . (2-4)
y

An inspection of Figure 6 shows that the (Xe’ Ye’ Ze) triad can be
aligned with the (Ue, Ve, We) triad by these same two rotations. This

means that

u x
— e T € T —
Ye = [ Ve | T [(po B ?j‘ I:Az} Ye | = [gpo B ?] [AZ:I e
w y X 7z y
e e
(2-5)
and
T
—_ T T —
X, = [AZ] [% - 2} u (2-6)
X y
Only one rotation is required to align the (U, V, W) triad with the
(Ue’ Ve’ We) triad (Figure 8). Thus,
u u
e
T = |v | = [w t] v | - [w t] T (2-7)
e e e e
X X
W w
e
and
T - [w t] Tz . (2-8)
e e
x

The necessary transformations are now available to develop a trans-
formation from the surface triad to the launch-point triad. From equations
(2-1), (2-6), and (2-7),

20
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or

(2-9)

H

%
]
H
[92]
t=
ol

where

- 17 - 51 [ - 3,

The symbol TSE was chosen as an abbreviation for transformation from the
space-fixed surface triad to the earth-fixed launch-point triad. Since [TSE]

is a product of orthogonal matrices, [TSE] is orthogonal. Therefore,
X = [TSE Tz 2-10
Xs = ] X, . ( )

Selection of the surface triad to simulate the inertial platform system
requires that a transformation be established from this triad to the vehicle
system. In addition, this transformation must be a function of the simulated
platform gimbal readings. The three right-hand rotations required to revolve
the inertial platform triad to the same orientation as the vehicle triad were
given in the discussion of Eulerian angles in Chapter I. Hence, the transfor-
mation in question is a product of the transformations of those three right-hand

rotations. That is,

X X
m
X = = = T SM X
X Z y
V4 VA
m

22



where

[TSM] = quﬁﬂzﬁdy

Since the (XS, YS, ZS) triad has the same orientation as the (X, Y, Z)

triad,

and

% - [TSM]' X
S m

This is the last transformation required by the total model.

(2-11)

(2-12)

23



CHAPTER II

EQUATIONS OF MOTION

The purpose of the total mathematical model is to determine the
relative motion of a Saturn vehicle during the first stage of powered flight.
The model is required to predict the vehicle's translational motion with respect
to the launch point, the space-fixed position and velocity which the launch
vehicle digital computer would compute, and the three Eulerian angles which
the vehicle's inertial platform would measure. To accomplish the first two
objectives, all translational motion of the vehicle is first referred to the space-
fixed surface triad. Next, translational motion of the earth~fixed launch point
triad is determined with respect to the surface triad. Earth-fixed motion of
the vehicle is then obtained by algebraically combining the space-fixed trans-
lational motion of the launch-point triad with the space-fixed translation
motion of the vehicle. To predict the three Eulerian angles, the angular
motion of the vehicle is first computed with respect to the vehicle-fixed triad.
This motion is transformed to Eulerian angular motion and integrated to
obtain Eulerian angles.

Since most of the equations of motion involve vectorial quantities such

as position, velocity, and acceleration, vectorial notation is used extensively
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in this chapter. A subscript is attached to each vector to indicate the triad
to which the vector components refer. The subscripts s, ¢, u, ve, e, and m
are used to refer to the surface, earth-centered, equatorial, earth-equatorial,
launch-point and vehicle triads, respectively. Since the surface triad and the
earth-centered triad have the same orientation, a vector referred to either
triad has the same components.

The equations that describe the translational motion of the launch-point
triad with respect to the surface triad will be derived first. Figure 9 shows
the relative position of the two triads for arbitrary t (the time from inertial

platform release). Notice that
R = R(t-01 = R(¥)

since the launch point remains on the Fischer Ellipsoid at a fixed geocentric

latitude gbo . The following three equations are obtained from an inspection

of Figure 9:
2]‘.
2

R(p) = |—— 2 ] (3-1)

o 2 a 2

cos zpo + (B sin z/)0> J
RP_ = R(t) - R(t=0)_ (3-2)

R(¥,) sin ¢

E(t)ue = 0 (3-3)

“R(3,) cos ¥ -
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26



By equations (2-2), (2-8), and (3-3)

E(t)S =

R(¥ ) sin ¥

[w t]T 0
e
X

-R( zl)o) cos

R(y)) sin ¥

ZpO

ue

R(zpo) cos zpo sin(wet)

—R(zpo) cos gbo cos(wet)

Then, substituting equation (3-4) into equation (3-2) yields

- R(¥)

sin
lpo

cos z,bo sin( wet)

- t
cos ;bo cos(cue )

sin
Zpo

0

-COS
ZpO
ue

0

R(zpo) cos zpo sin(wet)

R(zl)o) cos zpo(i - cos wet)

ue

ue

- ue

(3-4)

(3-5)
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T
T
Since the product I:AZ] [cpo - %] is constant with respect to time,

X y
0
- d — T T T
RPS = EE(RPS) = [AZ]’X [gao - ?]y weR(z/)O) cos z/)O cos(wet)
.weR(po) cos wo sin(wet)_J
ue
(3-6)

Equations (3-5) and (3-6) above describe the translational motion of the
launch-point triad with respect to the surface triad, as required.

The first law of motion of Newtonian mechanics is used to describe the
translational motion of the vehicle center of gravity. This law states that a
particle of mass m , subject to a force F , moves relative to a basic frame

of reference in accordance with the equation

T = kmA (3-7)

where A is the acceleration of the particle and k is the universal positive
constant that depends on the choice of units of force, mass, length, and time.
In the model being described, it is assumed that a system of units is used for
which k =1 . The frame of reference to which motion of the vehicle CG is
referred is the space-fixed surface triad.
Notice that neither m nor F is constant in the model. Mass is a

function of the rate at which the vehicle's engines consume the stored propel-
lant. F depends on the magnitude and direction of the engines' thrust, local

atmospheric conditions, velocity of the vehicle with respect to the air, and
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attitude of the vehicle. The forces that act upon the vehicle are described in
Chapter IV.

Equation (3-7) gives, on resolution into components along the surface

triad axes,

deS d2Ys dZZS
BT = Fes 0 T :Fys ST = Fos o

where ¥ , F [ and F are the components of force along the axes.
XS ys zS
These three equations are each solved for acceleration and integrated to obtain

velocity. That is, for arbitrary t,

s - s + ft Eﬁ dt (3-8)
dt dt £<0 0 m ?
s - s + ft Oys dt (3-9)
dt dt t—0 0 m ?

and
- - % + ft Tus dt (3-10)
dt a ) "4 m '

Position of the vehicle at arbitrary t is determined by integrating

equations (3-8), (3-9), and (3-10). .

t/dX

S
XS = <XS> + [ dt (3-11)
P Plieo o\ 4
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YS

Z8

The symbol

For a length of time A
Saturn vehicle does not move from its launch pad.
time reference,
constant velocity because of the earth's rotation.

position of the vehicle for 0 = t= A .

RS
s

and

where

t7dy
- <Ysp>t:0 + {(d—t>dt (3-12)
- (zs) + ft<dz‘°’>dt (3-13)
Plicg o\ O

used for this position vector is

XS
YS

ZS

after the inertial platform is released, a
For this reason, a second
T=t~A, is defined. If 7 = 0, the vehicle CG has a
Figure 10 shows the relative

During this time,

= RP_ + [TsE]" REO_ (3-14)
- Edt_(ﬁg) = (@) x RC, (3-15)
S
T r T | “e
w = |A - = 0 (3-16)
IR I
u
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and

—_ — Te—
RC_ = R(t)  + [TSE]" REO_ . (3-17)

Equations (3-14) and (3-15) are not valid for + > 0 . Figure 11 shows

the relative position of the CG after first motion. At this time,

— = _ 75 )
REe [TSE] (RSS R S) (3-18)
and
— —— T__
RS = RP + [TSE] RE . (3-19)
s s e

By differentiating equation (3-19), an expression is obtained that contains the

velocity of the CG with respect to the launch point triad.

d — d — d T — T d-—
St (BS) = F(RP) =+ <E[TSE] >REe + [TSE] <ERE6>

This equation can be solved for —adt—( ﬁe) by transposing terms and multi-

plying each one by [TSE] .

d — d == == d T|—
T REe = [TSE] E(RSS - RPS) - [TSE] <_(E [TSE] )REe
f——— e d T
= [TSE](RSS - RPS) - [TSE] <EE [TSE] > REe

(3-20)

All the terms in equation (3-20) have been previously defined except

—(;lt[TSE] T . An expression for this term will now be derived.
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Define Is , JS R Ks to be unit vectors along the XS , Y , Z axesand

I ,J , K tobe unit vectors alongthe X , Y , Z
e’ e e e e

axes. By equation

(2-10), these two unit triads are related by the equation

| 1 I
S e
g | = ITSEl |3 . (3-21)
K K
| S _ e_l

Notice that the derivatives of the unit vectors Ie , J , K are nonzero since

their directions continuously change because of the earth's rotational velocity.

Hence,

dn  /— - _
Erali (we>e>< n (3-22)

CUei
T T T | “e
w = - —_— 0 = o 3"
(we> ,:AZJ [(po 2 ] “eg (5-23)
e X y 0
ue Wg3

By defining [TSE] = [Aij] where i, j=1,2,3, equation (3-21) can be

rewritten in component form as

IS = A“Ie + A21Je + A31Ke

= A
JS AIZIe + 22Je + A32Ke

KS = A13Ie + A23Je + A33Ke
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An application of equation (3-22) and the fact that the unit vectors Is , JS , and
Ks do not vary with time yield expressions that contain the derivatives of all

the elements of [TSE] .

dI
s - . . . —
dt = 0 = A“.Ie + A21 Je + A31Ke +<we>e>< (Aii Ie + A21 Je + A31Ke) B
(3-24)
dJS p— - - .
dt = 0 = AizIe + A22 Je + A32Ke + (Ee)ex (AIZIe + A22 Je + A32Ke) s
(3-25)
and
aK,  _ . .
dt = 0 = A13Ie + A23Je + A33Ke +<Cl)e)ex (AISIe + A23Je + A33Ke) N
(3-26)
where
A = Sa

ij dt ij

By carrying outf the indicated cross product and collecting terms, equation

(3-24) becomes

0 = (Ail + wezAgi - we3A21) Ie + (A21 + (.L)e A“_ - weiAgl) Je

3

+ (Agy + WA m W A K (3-27)

i e2

The vectors Ie s Je , and Ke are linearly independent since they are mutually

orthogonal. Hence,
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Ay = w g — w Ay

Agg = w A T W aAy
and

Azl = Wb T w4 Agy

An application of the above procedure to equations (3-25) and (3-26) yields

expressions for Aij where i =1,2,3 and j=2,3 . These expressions are:

e2
Ags Wogh T W A
Ay W Az T w s A3
Az = W ,A13 = w4 Ao

Using the above equations, we can now express the time derivative of

[TSE] as
Ay Ap Ag
d . . .
T [TSE] = | Ay Ay Ay
A A A
| Ast 2 33 |




rwe3A21 - w81 Wogher W A W, gfhe3 = W ,As3
= | Woqfst W gAY Wo1An mw A w  Agg - W, 5713
W o1t W, Agy Woohte ~w_ Ag W oB13 ~ W A
r r .
0 e3  Yeo || A1 A Ag
= 'Q)e3 0 wei A21 A22 A23
8 wez —wei 0 ] _A31 A32 A33 _J
= [®] [TSE] ) (3-28)
where
0 e3 —weZT
(1 = "“es 0 C()ei
Cue2 _wei 0
Therefore,
d T d T T T T
S ITSE]T = [S(TSE]| = ([@][TSE]) = [TSE] [®]
dt dt
(3-29)

By substituting equation (3-29) into equation (3-20), dit(REe) - ﬁe can be

be expressed as

&
=
l

- = T—
[TSE](RSS-RPS) - [®] REe

[TSE](RS_ -RP) - (we>e x RE_ . (3-30)
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Equations (3-18) and (3-30) déscribe the relative translational motion of the
vehicle CG with respect to the launch-point triad as required.

Total motion of a vehicle is described by the model in terms of the
translational motion of its CG and rotational motion of the vehicle ébout its
CG. The equations that describe the second type of motion are all that remain
to be derived.

The model assumes a vehicle to be a rigid body constrained to rotate

about its CG. Thus, the angular momentum about the CG is
LT=1ow i+l wij+I wk |, (3-31)
X X vy z z

where i, j, k are unit vectors along the Xm’ Ym, Zm axes, respectively;

IX , I, IZ are the principal moments of inertia about these axes; and

W o wy W, are the components of angular velocity w of the vehicle about
these axes. Here, w is the angular velocity of the vehicle triad with respect
to the surface triad. Equation (3-31) is classical and can be found in most

books on Newtonian mechanics.

The total moment of the external forces about the CG is

— dL : .o, . .
M = Tl (wax + wax)l + (Iyu)y + Iywy)J
. . di
+ (IZ wz + IZ wz)k + IX wx at

dj dk

y y dt 4 CL)z dat (3-32)
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where

dI77
In= da
dw
wn: dt

for n=x,y,2

Since the time rate of change of the principal moments of inertia is very
small, it is assumed that iT) =0 for m=x,y,z . Each of the unit vectors

i, j,k changes only in direction so that

d

331

|

= w X7 for n=1i,j,k .

=3
o+

Thus, equation (3-32) can now be simplified to
M-=10¢ i+I & ji+I &k+wx (Lwi+l o j+I w k)
X X Vv y zZ z e X X vy z z
:[ch—ww(I—I)]i+|:Id)—ww(I-I):lj
X X y zy ‘z vy X z 'z X
+[Id)—ww(I—I)]k
zZ z X y X 'y
This equation can be rewritten in component form as

M; =1 w - w w (I =1)
X X y zy z

M, = cho - wx cuZ(Iz —Iy)
My =1 @ - w_w (I -1)
z z X ¥y X 'y
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where M;, M,, M3 are the components of M along 1i,j,k . Therefore,

-1 [ -
b M1/IX + wywz(Iy IZ)/IX

Om = |9 | = M2/Iy oo (L - Iy) /1y . (3-33)
_wZ- _Ma/Iz + wxwy(lx - Iy) /Iz_ _

An expression for the total moment vector, M, about the vehicle CG is given
in Chapter IV. Angular velocity of a vehicle about its CG is determined at

arbitrary t by integrating equation (3-33) to obtain

t -
@ = (Em) + { ©_ dt (3-34)

where

(5),, - o (5)

t=0 78
Equations (3-33) and (3-34) describe the rotational motion of a vehicle about
its CG as required.

Since the orientation of a Saturn vehicle is defined by three Eulerian
angles, some method of computing these angles must be established. One of
the simplest methods is to transform the vehicle angular velocity to Eulerian
angular velocity and integrate the Eulerian angular velocity to obtain Eulerian
angles. To this end, a transformation from the vehicle angular velocity to
Eulerian angular velocity will now be derived.

The required transformation will be derived from infinitesimal rota-

tions of a vehicle about its CG. Suppose that a rigid vehicle has turned through
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an infinitesimal angle about an axis through its CG. This infinitesimal rota-
tion may be represented by an infinitesimal vector 67 (Figure 12). 67
determines the displacements of all points of the vehicle.

Let T be the position vector relative to the CG of a point A before
the displacement and r + 6r the position vector after displacement. In the
rotation 67 the point A moves perpendicular to the plane containing the
vectors r and 67, in the same direction as the vector product 67 x T .

The magnitude of 6T is |67 AB = [67/|r|sing (F.igure 12). Hence,
6r = 67 x T . (3-35)

Infinitesimal rotations about a point can be added vectorially. Let 67
and 6m be two infinitesimal rotations applied in succession about axes
through the vehicle CG. Then the position vector of a point A in the vehicle
is r hefore displacement, r + 67 x ¥ after the 67 rotation, and
T+67x T+ émx (r+ 6nxr) afterthe 6m rotation. By neglecting

infinitesimals of the second order, the resultant displacement of point A is
dn x T + 6 x r = (67 + 6m) X T . (3-36)

Thus, an infinitesimal rotation of a vehicle about its CG may be described
either as an infinitesimal rotation 67 or by means of infinitesimal increments

in the Eulerian angles. The rotation of a vehicle from the orientation

( , , to a second orientation + A , + A , + A
Py Py Pp) (Pt A0y, 9o+ A0, ¢ +AQ)

may be accomplished by applying the following finite rotations in order:
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A gori , A goyK' ,y A cppJ where i, K', and J are unit vectors along the
Xm ,» Z', and Y axes, respectively. (See Figure 3 of Chapter I.) If the
increments in the Eulerian angles are infinitesimal, the order of these rota-

tions is immaterial, so that
61 = Ap i + Ap J + Ap K' . ' 3-37

The infinitesimal rotation of concern here is the rotation [wl|dt in the
direction of the unit vector w/lw| where w is the angular velocity vector
of the vehicle. Corresponding to this rotation, (lwldt) (w/lwl) = @dt,
are the three infinitesimal increments to the Eulerian angles, dgpri s d(ppJ,

d(pyK' . Thus, equation (3-37) becomes
wdt = de i + do J + do K' - (3-38)
Pr ¢p <Py

By dividing each term of equation (3-38) by dt, the expression

w = @i+ ¢ J + ¢ K (3-39
P <Pp Gﬂy )
d(pm
is obtained where gbm = & for m =r,p,y . It is now convenient to

convert equation (3-39) to an expression involving unit vectors along the
X, Y, and Z axes of Figure 3. Define j, k, I', J', I, and K to be unit
vectors along the Ym’ Zm, X', ¥Y', X, and Z axes, respectively. Then,

by an inspection of Figure 3, we see
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J = J , 3-40
[sop]y ( )
K’ K
and )
i '
J! — J 3_41
[cpy] ( )
Kl z Kl
From these two equations, it is easy to show that
i = cos cos I + sin J - cos sin K 3-42
qoy wp <Py wy Yy ( )
and
K' = sin I + cos K . 3-43
%o %y ( )

Then, by substituting equations (3-42) and (3-43) into equation (3-39) and

simplifying, we obtain

w = (@ cos cos + @ sin I + (¢ sin + @ )d
s - (o o8 cosg, + ¢ sing) (ppsino, + )

+ (@ cos - ¢ cos sin ¢ K . 3-44
(o o T Pr ¢, sin o, (3-44)

A resolution of w in the vehicle system can now be obtained by using

equation (2-11):
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- ]

D COS cos + ¢ sin
Pp COS @ COS @+ @ Sin @

w, = [TSM] ¢, sin (py + (pp
p  COS - @ cos sin
GDY <Pp P <Py (Pp
~ » sin + @
<Pp Wy @,
= p» sin + @ COoS cos
<Py Pp <Pp P <Py
» cos ¢ - @ sin cos
_Qﬂy @ <ﬂp ? <Py
[~ sin 0 1 %
¢P </7p
_ . 0 .
cos ¢, cos gﬂy sin P (py
-1 0 Q Y
L sin ¢ cos q)y cos 2 @,
@P
= [TEM] | ¢ (3-45)
y
Py
where
sin 0 1
gDp
[TEM] = cos ¢, cos cpy sin ¢ 0
-sin @, cos (py cos @, 0

Here, the symbol TEM was chosen to stand for the transformation from

Eulerian angular rates to vehicle angular rates. The inverse of {TEM] can

be computed by multiplying the transpose of the matrix of cofactors of [TEM]
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by the scalar 1/|[TEM]|, where |[TEM]/| is the value of the determinant

of [TEM] . Thus,

0 0 coS @
y
{ .
T -1 = - i ~Sl1
[TEM] . ‘Py cos @ sin ¢, cos (py sin gay cos @
~sin ¢ cos ¢ . cos (py sin gDy sin ¢
0 se -si
cos ¢ sec q)y In ¢ sec cpy
= 0 i . 3"46
sin ¢ cos ¢ ( )
1 -t-an (py cos @, tan goy sin @,
Therefore, [TEM]~! exists when <py # +90 degrees, so that
Qﬂp s
. -1 -1 —
= = . "4
q)y [TEM] wy [TEM] w (3-47)
@y “y
Since the yaw gimbal of a Saturn inertial platform is physically restricted to
rotations of +45 degrees from its initial position, the above restrictions on
(py create no problem.

Equation (3-47) is the required transformation for converting the
vehicle angular velocity to Eulerian angular velocity. The Eulerian angles
gop, (py and @, are computed at arbitrary t as follows:

/
@ = ((p ) + ¢ _dt (3-48)
n M) ¢=0 0o N
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for n=p,y,r . This is the last equation required to describe the rotational

motion of a rigid vehicle about its CG.

47



CHAPTER IV

FORCE AND MOMENT EQUATIONS

A Saturn vehicle experiences forces from three basic sources during
its first stage of powered flight. These sources are the vehicle's first-stage
engines and the earth's gravitational potential and atmosphere. This chapter
provides the equations required to compute the total force and moment vectors
that result from these forces.

The S-IC stage of a Saturn V vehicle has five engines (Figure 1) that
propel the vehicle through the earth's atmosphere. The four outboard engines
are attached to the base of the stage by mechanical joints that permit the
engines to gimbal or rotate through a limited angle from their null position.
Gimbaling of these four engines according to commands from the flight control
computer forces the vehicle to follow the desired attitude commands. Each
outboard engine has two hydraulic actuators, attached 90 degrees apart, that
execute the flight control computer commands. One actuator provides
attitude control in the pitch plane, and the other actuator provides attitude
control in the yaw plane. Attitude control is achieved in the roll plane by

moving both the pitch and yaw actuators in the proper directions.
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In Chapter I, the word "control" was defined, and the control system
was briefly described. A more detailed description of this system will accrue
as the model for it is presented.

A Dblock diagram of the control system for a Saturn vehicle is shown in
Figure 13. Attitude error signals are computed in the LVDC from the plat-
form gimbal angles and the commanded attitude angles. The vehicle angular
velocities about the Xm , Ym, and Zm axes are measured by three rate
gyroscopes. In the flight control computer, signals from the rate gyroscopes
and the attitude error signals are electrically filtered, multiplied by a gain
factor, and then combined to generate the commands to the four outboard
engine actuators.

The commanded attitude angles Xp s Xy’ and Xr are defined to be the
three Eulerian angles through which the inertial platform triad must be
rotated to align it with the desired orientation of the vehicle. If ic’ jc’ and
kc are unit vectors along the vehicle Xm’ Ym’ and Zrn axes, respectively,

when the vehicle has the orientation (xp, Xy’ Xr) , then

i -I-S ] ES i
|0, B, 0 [ | - e [
K % | s

where [TSC] = [xr]x [xy]z [xp]y and I, J, and K are unit vectors

along the surface triad Xs , Ys , and ZS axes respectively.

49



0s

!

1

PITCH, YAW AND
ROLL RATE
GYROSCOPES

CONTROL SIGNAL
PROCESSOR

(¥p.¥y.¥0)

{

-
y

CONTROL LAWS FOR

ATTITUDE ERROR
ELECTRICAL
FILTERS

(#5. ¢y 9¢)

ANGULAR VELOCITY
ELECTRICAL

FILTERS

ot

TOTAL ACTUATOR
SYSTEM

P
(Boct Byes Bic)

\

EQUATIONS DEFINING

r) INDIVIDUAL ACTUATOR

SATURN ¥
INERTIAL
PLATFORM
o
w |
INTEGRATING =15
ACCELEROMETERS olE
w o
P (@]
LAUNCH VEHICLE
DIGITAL ADAPTER
1 1
SIGNAL ANALOG TO
) DIGITAL o
PROCESSOR CONVERTER
VELOCITY (¢p,wy.P,)
v 1
INTEGRATION ATTITUDE
ERROR
PROGRAM EQUATIONS
‘ [}
\ i
GUIDANCE
PROGRAM
(xp. Xy, x,)

LAUNCH VEHICLE
DIGITAL COMPUTER

FLIGHT CONTROL COMPUTER

COMMANDS

ACTUATORS ATTACHED TO THE
FOUR S-IC OUTBOARD ENGINES

INODIVIDUAL
ACTUATOR

\

MISSILE

FiIG. 13.

DYNAMICS

COMMANDS

SATURN CONTROL SYSTEM BLOCK DIAGRAM




Similarly, the attitude error signals ¢p , zpy , and z,br are defined to be the

three Eulerian angles through which the vehicle triad (Xm s Ym , Zm) must

be rotated to align it with the (ic R jc , kc) triad. Therefore,

i i

[&]

i, | = [ ¢r]x[¢y]z' [wp]y j (4-2)
k_ k

- . . v d7z
where i, j, and k are unit vectors alonk the vehicle Xm’ m’ an m
axes respectively. By equations (2-12) and (4-1), a second expression for the

transformation from the (X , Y , Z ) triadtothe (i , j , k) triadis
m m m c’ ¢ c

obtained.
i i
c
. T
]C = [TSC] {TSM] j . (4-3)
k k
c

Hence, by equations (4-2) and (4-3),

[wr]x [wy]z [¢p]y - qTsciiTsm)T . (4-4)

The following expressions for z/)p , zpy , and ¢r can be obtained from
equation (4-4) by performing the indicated product and equating corresponding

elements of the two matrices.

M) cos <ﬁr+_">

b= (9= %) cos( > -

_{ %r T Xy
+ (<py - xy) s1n<—2—— > (4-5)
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S
I}

Pt X,
- CcosS\ —————
. (qoy xy) B

®_+X @ +x\
- (¢, = x) cos <y—2——¥—>sin <——r—2——r/ (4-6)

<py+x
(0, = %) + (@, -x) sin| =5 (4-7)

-

=
Il

The details involved in deriving the above expressions and the approximations
on which they are based are given in Reference 3. These are the expressions
used by the LVDC for computing the attitude errors.

The attitude errors are converted to analogue signals by the LVDA
before they reach the flight control computer. Here, both the attitude error
signals and the angular velocity signals from the rate gyroscopes are passed
through electrical networks called filters. These networks are designed to
remove the effects of flexible body motion from the input signals and to main-

tain proper control system stability. In this paper the symbols Ep, Tp-y, d/r
and $p’ é’y’ ér are used to denote the filtered attitude error and angular
velocity signals, respectively.

A special digital filtering technique (Reference 4) has been developed
to simulate the electrical control filters. This technique will not be discussed
in this paper since it is widely used and a discussion of it is lengthy.

The filtered attitude error and angular velocity signals are combined

in the flight control computer by the following control laws to give the

commanded thrust deflections in the pitch, yaw, and roll planes.
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Pitch: = A + A B (4-8)

Yaw: - A + A7 (4-9)
Byc Oy 'y 1y6y
Roll: Brc = AOr e T A1r¢’r (4-10)

Here, AOn and Ain for n=p,y,r are gain factors that provide stability to
the control system. The magnitudes of these factors are specified as step
functions of flight time.

Individual commands to the actuators of the four control engines are

defined by the following equations:

Bpl = ch - Brc/ﬁ (4-11)
Boz ~Boe "By /N2 (4-12)
Boag = Boe ™ Brc/«/7 (4-13)
Boa = Boe * By /N2 (4-14)
Byt = Bye * Bp/NZ (4-15)
By2 = Byc - ﬁrc/ﬁ (4-16)
By3 = Byc - Brc/\/? (4-17)
Bya = Bye + Brp/NZ (4-18)
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where S pi and B yi are the commands to the pitch and yaw actuators of the
ith outboard engine.

The positive signs for all the control parameters are shown by Figure
1. A positive attitude error about a vehicle axis requires a negative right-
hand rotation about that axis to correct for it. A positive angular velocity
about a vehicle axis has the same sense as a positive right-hand rotation about
that axis. The bases of the four outboard engines are moved paraliel to the
+Zm axis by a +8 b creating a negative moment about the pitch or Ym axis.
Similarly, a +,8y moves the base of the engines parallel to the negative Yrrl
axis, creating a negative moment about the yaw or Zm axis. Thus, positive
actuator movements correct for positive attitude errors.

The thrust vector of each of the five S-IC stage engines is ideally
parallel to the Xm axis when the engine is in the null position. However, an
engine's thrust vector alignment may deviate because of electrical and
mechanical tolerances. To simulate the effect of the ithrust vector deviation,
the null position of each engine is assumed to be offset by the two small angles
ABand AB ., for 1=1,2,3,4,5. Here, ABpi and A, have the same
sense as Bp and By in Figure 1.

The method used to resolve the components of force of an S-IC stage
engine along the vehicle axis is shown in Figure 14. In this figure, the

(X", Y'", Z") triad has the same orientationas the (X , Y , Z ) triad.
m m m

Fei is the thrust vector of engine i fori=1,2,3,4,5. Note that

B p5 = By5 = 0 since the center engine does not gimbal (Figure 1). Let Fexi ,
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F ., and F_ ., be the components of F . along the X", Y", Z" axes,
eyi ezi ei

respectively. From an inspection of Figure 14, it is easy to show that

F i = lﬁeil/K (4-19)

Foyi © lfeil tan (8 +A,8yi)/K (4-20)
and

F .=~ lfeil tan (8 +A,8pi)/K (4-21)
where

K 1 + tan (Bpi+A,8pi) + tan (Byi+AByi) .

The thrust of each S-IC stage engine is a function of time and atmos-

pheric pressure at the engine. lFeil is computed from the expression
IF | = F _ - P A, , (4-22)

where Fvi is the thrust of engine i firing in a vacuum, PA is the atmos-

pheric pressure at the engine, and Ai is the exit area of engine i . FVi is

predicted as a function of time.

As the vehicle's engines consume propellant, the vehicle CG and thus
the origin of the (Xm , Ym, Zm) triad change with respect to the vehicle

frame. A frame-fixed triad (Xf, £ Zf) is defined to serve as a reference

for referring the location of the CG, the attach points of the engines, and
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certain aerodynamic characteristics. The origin of this triad is at the inter-
section of the geometrical centerline of the vehicle and the plane that contains
the attach points of the S-IC stage engines. The +Xf axis is directed along
the stage centerline, and the Yf and Zf axes are parallel to the Ym and Zm
axes, respectively. Thus, this is a right-hand triad with the same orientation
as the (Xm, Ym’ Zm) triad (Figure 15).

An expression for the moment of an S-IC engine about the vehicle CG
can now be derived. The total thrust of an engine is assumed to be applied
at the attach point of the engine to the stage. Figure 15 shows the relative

position of the vehicle CG with respect to the attach point of engine i . By

definition, the moment M of a vector V about a point 0 is

M =T x V , (4-23)

where T is the vector directed from point 0 to the point of application of V.
Therefore, from Figure 15, the moment l\_/Ii of the thrust of engine i about

the vehicle CG is

M, =T x F, = (P, -CG) x F ., (4-24)
1 1 el 1 el

where Ei and CG are the frame-fixed position vectors of the attach point of
engine i and the vehicle CG, respectively.

The above equation along with equations (4-19), (4-20), and (4-21)
provide the total model with expressions for computing the forces and moments

resulting from the thrust of the S-IC stage engines.
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A Newtonian potential function (Reference 1) is used to determine the
earth's gravitational acceleration vector at the vehicle CG. This function was
discussed briefly in Chapter I. No further discussion of this function will be
presented here except to say that it uses the position vector, Flgu, of the
vehicle CG referred to the (U, V, W) equatorial triad to compute the
gravitational acceleration of the vehicle.

The position vector -P—Pu will be computed from the vector ﬁc

(position of the vehicle CG relative to the earth-centered triad). From

Figures 9 and 11,

PP - R(t= . -2
P_ = R(t=0)_  + RS_ (4-25)
Then by equation (2-3)

PP = [wo-ﬁ/Z]y [AZ:IXEC

- [(po - w/z]y [AZ]X<§(t:O) ot ES> . (4-26)

—P—Pu is used as the independent variable in the Newtonian potential function to
obtain the gravitational acceleration of the vehicle, E’ﬁu .

Since the equations of motion refer all translational motion of a vehicle
to the surface triad, it is convenient to refer the gravitational acceleration to

it also. Thus, by equation (2-2)

GR_ = [AZ]: [%—n/z]: (Eﬁu . (4-27)
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The gravitational force vector, F_GS , referred to the surface triad, can now
be derived from an application of equation (3-7), the first law of motion of

Newtonian Mechanics. Hence,
FG = m GR (4-28)

where m is the mass of the vehicle.

As a vehicle flies through the earth's atmosphere, it experiences the
forces of buoyance and air friction. The buoyance force, Fb’ is assumed to
have the same direction as the position vector of the vehicle relative to the

center of the earth. Its magnitude is

IF, | =V, p IGR_| , (4-29)

where VA is the volume of air displaced by the vehicle and p is the density

of the air through which the vehicle is flying. Therefore,

<Fb>s =V, P IGRSI PP /!PPcl . (4-30)

Notice that ﬁc / iﬁcl is a unit vector that has the same direction as fb .

The point of application of Fb is assumed to be at the vehicle's CG.

Therefore, the moment of Fb about the CG is zero.
Figure 16 shows a vehicle. moving through the earth's atmosphere with
velocity RV with respect to the surrounding air. Contact of the vehicle with

particles of air produces a distribution of pressure over the vehicle's entire

surface. Rather than consider the pressure distribution, its effect on the
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motion of the vehicle is accounted for by applying a suitable single force at
a point on the vehicle's geometric centerline called the center of pressure
(CP). To preserve the laws of Newtonian mechanics, the single force, fA s
must be equal to the vector sum of the forces of the pressure distribution, and
the CP must be located at a point that causes the moment of FA about the
vehicle CG to equal the moment of the pressure distribution about the CG.
Since the pressure distribution directly opposes the vehicle's relative velocity,
FA has the same sense as that of -RV .

The total force, FA , 1s customarily resolved into two components.
The normal force, Frl , is the. component normal to the vehicle's longitudinal
axis and the drag, D, is the component parallel to the longitudinal axis.
Thus, to describe the aerodynamic force of the pressure distribution, the

variation of Fn, D, CP, o, « and RV must be specified.

£

For a given Mach number and « (angle-of-attack), Frl and D are
proportional to the aerodynamic pressure, Q , and the cross-sectional area

of the missile, A . Here,

Mach = |RV|/VS (4-31)
where VS is the velocity of sound in the air surrounding the vehicle and

Q = p|RVI¥/2 . (4-32)
Because of these proportionalities, it is customary to write

F = C QA (4-33)
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and

D = C QA (4-34)

where Cn and C, are dimensionless proportionality coefficients.

d
Both coefficients and the distance from the origin of the (Xf, Yf, Z.)

f
triad to the CP are determined experimentally as functions of Mach and «
Resolution of FA into drag and normal force and the moment of FA about
the CG are directly dependent upon « . Dependence on Mach accounts for
variation of these three parameters with air temperature as well as relative
velocity. The main variation in the velocity of sound arises from the fact
that the velocity is proportional to the square root of the absolute temperature.
RV is the difference between the velocity of the vehicle and the velocity
of the air surrounding the vehicle. Since the earth's atmosphere rotates with

the earth, the velocity of air has a component because of the rotation of the

earth, <Zse> X _P—]E;c’ and a second component because of the velocity of the

air with respect to the earth, W Thus, RV referred to the (X ,Y , 2 )
e m’ "m’ m

triad is

RV_ - [TSM]) RS - (a) «PP - [TSE]T W i (4-35)
m S e s C e

The parameters « and «

) (Figure 16) are determined from the

components of —ﬁm . The expressions used for computing them are

RVX

o = arccos | —— (4-36)
IRV_ |
m
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and

RVZ
o, = arc tan

2 RV ’ (4-37)
y

where RV , RV and RV  are the components of RV alongthe X , Y ,
x’ Ty Z m m m
Zm axes, respectively.

Expressions for the components of F along the vehicle~fixed axes

A

can now be established. From Figure 16, it is easy to see that

-D
< FA> = —Fn sin ozﬂ , (4-38)
m
—Fn cos ozﬁ
m

where D and Fn are defined by equations (4-33) and (4-34).

Equation (4-23) is used to determine an expression for the moment of

FA about the vehicle CG. From Figures 15 and 16, it is apparent that

T =10 - CG 4 (4-39)

where Fm corresponds to T in equation (4-23) and CP is the distance from

the origin of the (Xf, Yf, Z triad to the CP . Therefore, the aerodynamic

¢

moment, —MA’ of FA about the CG is

<MA> =T X <FA> ) ( 4-40)
m m
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Since the atfnospheric parameters p, air density, PA’ atmospheric
pressure, and VS, the velocity of sound, are functions of the altitude of the
vehicle above the earth, an expression for altitude must be derived. Figure
17 shows a meridian through the polar axis of the earth that contains the posi-
tion vector, ﬁc , of the vehicle CG with respect to the (Xc , Y Zc)

C

triad. The following expressions are obvious from an inspection of the figure.

‘13_130 s
§ - arcsin | —— (4-41)

"PP | ' |

C e

. 2
/ 2 a ..

c = z/ cos® 0 + (E smG) (4~-42)
h' l?ﬁcl - ¢ (4-43)

The variable h' in equation (4-43) is assumed to be a close approximation
to the actual altitude h .

Expressions have now been developed for all forces and moments that
a vehicle experiences as it moves through the earth's atmosphere. Thus,
expressions for the total force and moment vectors can now be obtained by
algebraically combining the individual contributors.

The total force is composed of the thrust of the five S-IC stage engines,
the force of gravity, the buoyance force, and the aerodynamic force. Thus,

the equation for the total force Fs is
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T - _— - ) T
Fei + FGS + (Fb + [TSM] (FA>
i s m

(4-44)

F, o= [TSM] |

5

1=
The total moment about the vehicle CG is composed of the moments

resulting from the five S-IC stage engines and the aerodynamic force.

Therefore, the expression for the total moment vector, Mm , is

5
M = L M)+ <MA> i (4-45)
i=1 m
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CHAPTER V

NUMERICAL INTEGRATION

The design of a complex and expensive vehicle system such as the
Saturn V requires an analysis of the response of a vehicle to different designs,
vehicle engineering tolerances, and various atmospheric conditions. Because
a large part of the analysis does not involve flexible motion of a vehicle, the
rigid-body response can be predicted by electronic computer programs based
on mathematical models like the one developed in this paper. Programs
of this type require an efficient numerical integration technique that will
provide a solution within the accuracy of the data which describe the vehicle
dynamic response characteristics. One such program, the liftoff program,
was developed from the mathematical model presented in Chapters II, III, and
Iv.

In a search for the most acceptable integration technique, the fourth-
order Runge-Kutta formula and two of Dr. E. B. Shanks' integration formulas
were each used in the liftoff program to compute the first stage trajectory of
a typical Saturn V vehicle. Comparative data were generated for each formula

over a range of integration step-sizes. Also, comparative data were
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established for a technique associated with one of Dr. Shanks' formulas
that regulates the integration step-size. An analysis of these data and a
description of the integration formulas are presented in this chapter.

The three numerical integration techniques to be compared are the
fourth-order Runge-Kutta formula, the fourth-order formula developed on
page 8 of Reference 5, which shall be referred to as formula 4-3, and the
fifth-order formula 5-5 presented in Reference 6. Only a description of the
equations as they apply to a differential equation of the form y' = gf f(t,y)
need be given since the system of first and second order differential equations
presented in Chapter III are reducible to an application of this result.

The Runge-Kutta formula is presented first. If the initial values of
the differential equation y' = f(t,y) are t;, y,, the value of y at ty+h

is computed from the formulas

fg = £(ty, yo)

h h
f1 = f<t0 + ‘5 s + ‘—2'9‘)
h
f2 = f(to + "2‘ ) + %i) (5_1)

f3 = f(to + h s Yo T+ hf2)

y:yO+%(f0+2f1+2f2+f3)

evaluated in the given order. A derivation of this technicjue is given in most

books on numerical analysis.
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The formula 5-5 expressions for determining the value of y at

tp+h are

fO = f(t(] ’ yO)

)
—
i

f(ty + h/9000, y, + hfy/9000)

Lac}
)
|

= f(ty, + 3h/10., y, - 404.7hf, + 405hf,)

fg = f(ty+ 3h/4, y,+ 20241hfy/8 ~ 20250hf;/8 + 15hf,/8)

—h
>
i

f(tg+h, yo - 931041hf;/81 + 931500hf, /81
- 490hf, /81 + 112hfy/81)

h
y = ¥o+ 1134 (105f, + 500f, + 448f5 + 81f,) ,

where each formula is evaluated in the given order.

Formula 4-3 differs from the above formulas in that it uses

(5-2)

fity -h, y(ty - h)] , the value of f at t; - h,in computing y. The value of

y at t; + h is determined from the expressions

fo = £to, Yo

fi = ftg~h, y(ty-h)]

f, = f[ty+h/2, yo+ h(5fy - f;)/8]

f3 = flty+h, yo+h(-3f)+f; + 4fy) /2]

y = yo+ h(fy+ 4fy + £3)/6
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The fourth-order Runge-Kutta formula is used for the first integration
step, then formula 4-3 is used to continue the integration process.

A method of controlling the integration step-size to obtain the required
accuracy is presented in Reference 7. A method is introduced for computing
an estimate of the integration error made at each step. The error estimate,
called a regulator, is used to determine the step-size for the next integration
step.

The regulator for formula 4-3 is given in Reference 5. By combining

the fi of equation (5-3) by the formula
Vi — yO+h(_5f0+f1+ 12f2 _2f3)/6 , (5_4)

a third-order solution for y at ty+ h is obtained. The regulator, R, is
defined to be the absolute value of the difference between the values of y

computed from equations (5-3) and (5-4); that is,
h .
R = ly - y1| = E |6f0 - f1 - 8f2 + 3f3l o (5—5)

Thus, R is a fourth-order estimate of the third-order error. Note that the
number of additional calculations required to compute R are insignificant
since the same evaluations of f are used to compute both y and R .

When the integration process extends over a number of steps, the value
of R can be monitored and used as an error indicator for controlling the step~
size. To accomplish this, a lower limit L; and an upper limit L, (0< L; < Ly)

are established for R . At the end of each integration step, R is compared
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with these limits. If R < L;, the step-size is doubled; if R > L, , the step-~
size is halved; if Ly = R = L, , the step-size is not changed. When the
step-size is changed, the fourth-order Runge-Kutta formula is used over the
next step to establish a value for f; in equation (5-3). The integration
process is then continued with formula 4-3.

The differential equations of the liftoff program reduce to a system of
twelve first order differential equations. Thus, twelve distinct values of R
can be calculated at the end of each integration step. Which of the twelve
values of R or what combination of the twelve values of R should be moni-
tored for controlling the integration step~size is an important question that
must be answered in order to effectively use this procedure in the liftoff
program. This question can be answered by determining which distinct values
of R are most sensitive to the total accuracy of formula 4-3 in integrating
the equations of motion. The data required to obtain this information can be
described more easily after the comparative data for the three integration
routines are presented.

Before the comparative data were generated, a computer program was
written and verified for each of the three integration formulas. The programs
were written for the SDS-930 computer at Marshall Space Flight Center in
Huntsville, Alabama. The differential equation x%y'' + 2xy' + 2y + 4+ x = 0
which has y =cx + cz/x2 -2+ x%/4 asa general solution was chosen to be
used in verifying the programs. Choosing x=1, y=1/4, andy' = -25/8

as initial values, the exact solution for x # 0 becomes y =x/8 + 15/8x? + x°/4,
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This equation was then numerically integrated over the interval x =.1 to

x = 5 to obtain the following data.

Runge-Kutta 4-4 Formula 4-3 Formula 5-5

Step-Size Error Step-Size Error Step-Size Error
.10 .10 x 10% .10 .11 x 104 .10 .10 x 103
.05 .95 x 102 .05 .10x 108 .05 .46 x 10!
. 025 .65 x 10! . 025 .61 x 10! . 025 .15 % 10°
.01 .16 x 10° .01 .53 x 1071 .01 .15x 1072
. 005 .10x 1071 .005 .32 % 107! . 005 .48 x 1074
. 0025 .62x 1073 . 0025 .60 x 1072 . 0025 .28 % 107°
. 001 .16 x 1074 . 001 .46 x 1073 . 001 .12x 1078
.0005  .30x 1079 .0005 .59x 1074

Next, the trajectory parameters to be analyzed for comparing the
different integration formulas in the liftoff program had to be selected. A
time history of the vehicle position and orientation with respect to the
(XS, YS R ZS) triad basically defines the vehicle trajectory. For this

reason, the parameters xs , ys , zs , , , and are the obvious
p p N D p Qﬂp 90y Y

ones to be contrasted.

Selection of data for use in generating the comparison results
was the next task. Data which represent the dynamic characteristics of a
typical Saturn V vehicle were chosen. Large dynamic disturbances were
imposed on the trajectory by failing an S-IC stage outboard engine 70 seconds
after liftoff and disturbing the atmosphere with a wind that peaked immediately

following the engine failure (Figure 18). The wind was directed normal to the
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vehicle flight path in the direction that would create an aerodynamic moment
on the vehicle having the same sense as the moment created by the engine
failure. When the entire wind profile is increased by 1 meter-per-second, the
control system is incapable of continuing to control the vehicle's attitude after
the engine failure. That is, the aerodynamic moment forces the vehicle to
begin to tumble. Thus, the chosen trajectory is representative of nominal
flight before 70 seconds and highly disturbed flight thereafter.

The liftoff program is written in single-precision for a CDC-3200
computer at the Marshall Space Flight Center in Huntsville, Alabama.
(Single-precision on this computer means that eleven digits other than the
exponent are assigned to each floating point number.) Tables 1, 2, and 3
present comparative data obtained from this program for different integration
formulas and step-sizes at the 70, 80, and 90 second time points of the
trajectory. The three different time points in the trajectory are presented
in case any one formula is biased at any one of the time points.

The data presented in the tables were obtained from an on-line printer
while the trajectories were being computed. Since the CDC-3200 computer
does not print and compute simultaneously, run time is affected by the amount
of output obtained. For this reason, only a small amount of output was
obtained from the trajectories for which the computation times are presented
in Tables 1, 2, and 3. During the first 70 seconds of each trajectory, output
was obtained every 10 seconds; for the remainder of the trajectory output

was obtained every 5 seconds.
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Some way of comparing the accuracy of the solutions presented in the
tables must be established in order to evaluate the comparative data. At
present, no means of determining an exact solution to a trajectory based on a
specific set of vehicle dynamic data exist. A review of Tables 1, 2, and 3
reveals that the differences between the solutions reached by the three formu-
las are less than 1 percent in all parameters except the roll and yaw attitude
angles which differ less than 4 and 6 percent, respectively, at the 90 second
time point. Therefore, it shall be assumed that the exact solution does not
differ more than these percentages from the solution reached by any one of the
formulas. Based on this assumption, the accuracy of each formula can be
judged by whether the difference between the solution it reached and the
solutions reached by the other two formulas is within the accuracy of the data
that describe the dynamic characteristics of the vehicle.

Because of hardware and engineering tolerances, the dynamic charac-
teristics of a vehicle cannot be predicted exactly. Publications that present
the dynamic data for a particular Saturn V vehicle give the statistical varia-
tions of the data. The one-sigma data tolerances are listed in Table 4. The
effects of these tolerances on the trajectory when applied to the dynamic data
used to generate Tables 1, 2, and 3 were assessed using formula 4-3 with an
integration step-size of , 125, Tables 5, 6, and 7 give the solution of the tra=-
jectory at 70, 80, and 90 seconds, respectively, with the specific tolerances
applied in both the most helpful and most harmful way, Here, the most helpful

way is defined to be an application of the tolerance that reduces the effect of the
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engine failure and wind disturbances; the most harmful way is defined to be an
application of the tolerance that increases the effect of the engine failure and wind
disturbances, The effect of each tolerance can be assessed by comparing the
formula 4~3 solution of Tables 1, 2, and 3 with Tables 5, 6, and 7.

A comparison of Tables 5, 6, and 7 with Tables 1, 2, and 3 shows
that differences in the solutions reached by all three integration techniques
are within the accuracy of the Saturn V dynamic data. Therefore, by this
method of judging accuracy, all three integration techniques are acceptable
from an accuracy stand point.

A study of Tables 1, 2, and 3 reveals that formula 4-3 would be the
most desirable integration formula to use in the liftoff program from a stand-
point of computer run time, accuracy, and stability of the solution. At all
three time points, the three formulas reach a stable solution at the same
step-size. Also, the solution reached by formula 4-3 does not differ signifi-
cantly from the solutions reached by the other formulas, and this difference
is within the accuracy of the input data. The differences between the Runge-
Kutta solution and the formula 4-3 solution are so small that the solutions are,
for all practical purposes, identical. This fact is important since the fourth-
order Runge-Kutta formula is presently being used almost exclusively in all
digital trajectory programs at Marshall Space Flight Center. Computer time
would be saved by use of the formula 4-3 since it requires less computation

time for a given step-size than the other two formulas.
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As previously stated, the input data chosen for this study resulted in a
trajectory that has both nominal and highly abnormal vehicle dynamics. The
first 70 seconds of the trajectory represents normal dynamics since the
vehicle is disturbed only by a wind. An engine failure in combination with the
wind resulted in dynamics which very closely approached control loss following
70 seconds. Thus, the formula 4-3 has proven to be the most practical formula
for integrating both nominal and highly off-nominal vehicle dynamics.

With the 4-3 formula established as a practical one to use in the liftoff
program, an investigation of the value of the formula 4-3 regulator for control-
ling the step-size in the program becomes a logical extension of this analysis.
As previously stated, twelve distinct values for the regulator can be obtained
at each integration step in the liftoff program. Effective control of the step-
size requires a regulator that is sensitive to the total accuracy of the integra-
tion process. Since all the parameters obtained by integration are related
through the differential equations, the selected regulator must be a function
of the regulators for the parameters that contain the largest percentages of
integration error. Here, the percentage of integration error for a parameter
is defined to be: 100 x integration error + absolute magnitude of the param-
eter. By assuming a regulator to be a good approximation of the actual integra-
tion error, we can determine these parameters by analyzing the twelve regula-
tor values for various integration step-sizes. Figures 19 through 30 present
the time variations of the twelve difference regulators for integration step-
sizes from .03125 to .50 . The Saturn V dynamic data used to generate

Tables 1, 2, and 3 were also used to generate these figures.

78



Table 8 lists the twelve parameters that are integrated and gives the
largest percentage of error associated with each one. The largest percentage
of error for a parameter was computed by using the peak value of the param-
eter's regulator at a step-size of . 50 as the maximum integration error.
Table 8 indicates that the regulators for W wy, and w —are the ones most
sensitive to the total accuracy of the integration process. A comparison of the
regulators for these three parameters (Figures 25, 26, and 27) with the other
nine regulators verifies this. That is, the response of these three regulators
to the engine failure and wind gust disturbances at 70 seconds was much
greater than the response of the other nine regulators.

With the regulators for w_, c{)y, and w_~established as the ones most
sensitive to the total integration accuracy, the question of how to combine
them into one total regulator must now be answered. Figures 25, 26, and 27
show that the regulator for W is approximately ten times larger than the
regulators for wy and w, - This prevents the three regulators from being
combined directly. Equation (3-33) shows that any disturbance that affects
the roll attitude also affects the pitch and yaw attitude. (Notice that
w R d(pr/dt , wy ~ d(,Dp/dt , and w, ™ dgpy/dt .) Based on these two facts,
the decision was made to use the root-sum-square of the regulator for w
and w, as the total regulator for controlling the step-size in the liftoff pro-
gram. Figure 31 presents the time variation of the total regulator for step-

sizes from .03125 to . 50.
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Limits must be established for this regulator in order to use it to
control the integration step-size. These limits are used in combination with
maximum and minimum restrictions on the step-size to maintain an acceptable
integration error. The step-sizes required to obtain an acceptable solution
can be determined from Tables 1, 2, and 3. From liftoff to 70 seconds, a
step-size of .50 is acceptable; from 70 to 90 seconds a step-size between
.125 and .25 is required. Thus, the maximum and minimum restrictions on
the step-size would be .50 and .125, respectively. The upper limit, L,,
for the total regulator can be established from Figure 31. Before 70 seconds,
the regulator for a step-size of .50 does not exceed .00025. Following 70
seconds, the regulator exceeds .00025 once for a step-size of . 125 and twice
for a step-size of .25. Therefore, Ls was chosen to be .00025. An effective
value for the lower limit, L, , was established from a tabulation of the time
variation of the total regulator with step-size. A value of .00005 was chosen
for L; since this value would allow the step-size to increase only when the
regulator began to reach a significant peak. These values for L; and L,
were verified as being reasonable by a number of computer runs using small
variations to these numbers. The Saturn V dynamic data used to generate
Tables 1, 2, and 3 were also used in these verification runs. Since the above
regulator and step-size limits were established for a trajectory that contains
both nominal and highly disturbed dynamics, they should be valid for any

trajectory required by a vehicle design or design assurance study.
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The formula 4-3 routine for the liftoff program was modified to use
the total regulator, R, for controlling the step-size. If R < L;, the
step-size is doubled; if R > L, , the step-size is halved; if Ly = R = L,,
the step-size is not changed. However, before the step-size is changed, the
value to which the step-size is to be changed is checked to make sure it is not
outside the step-size restrictions.

With L; =.00005, L,=.00025 and .50 and .125 as the maximum
and minimum step-size, respectively, a trajectory was computed with the
modified formula 4-3 routine. The solution of this trajectory at the 70, 80,
and 90 second time points is presented by Table 9. This solution is not only
more accurate than the formula 4-3 solution with a step—slize of .25 (Tables
1, 2, and 3), it also required 25 percent less computer time. Thus, the
chosen regulator has been shown to be an effective indicator for controlling
the integration error and reducing the computer time.

This chapter has established that the fourth-order formula 4-3 is a
practical integration formula to use in the liftoff program. Since this program
contains the basic differential equations of motion of which most rigid-body
trajectory programs are composed, the formula 4-3 numerical integration
routine has been shown to be more practical to use in these programs than
either the fourth-order Runge-Kutta formula or the fifth-order formula 5-5.
In addition, the technique for controlling the integration step-size associated
with the formula 4-3 has been shown to effectively increase the efficiency of
the formula by as much as 25 percent when the trajectory being computed

contains large dynamic disturbances.
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Table 1. Solution of Trajectory at 70 Seconds

Step-Size XS s zS Time™ (min
ep-Siz %y Oy @, 0 y b b (min)

Formula 4-3

. 03125 -28.7873 ~. 4728 . 0027 8947.70 11009. 18 36465. 81 23.646
. 0625 -28.7873 -.4728 . 0027 8947.69 11009. 17 36465. 80 12,066
.125 ~28.7873 -. 4725 . 0027 8947.18 11009. 17 36465.73 6.306
.25 ~-28.7873 -.4729 . 0027 8947. 88 11009.14 36465. 72 3.321
.50 ~28.7872 -.4717 . 0027 8946, 41 11009.13 36465. 54 2.005

Runge-Kutta Formula

.03125 -28.7873 -.4726 . 0027 8947. 34 11009.19 36465.79 30.814
. 0625 -28.7873 -. 4726 .0027 8947. 38 11009.18 36465. 78 15.650
.125 -28. 7873 -.4724 . 0027 8947.15 11009.18 36465, 72 8.075
.25 -28.7874 -. 4727 . 0027 8948. 00 11009.14 36465.69 4,258
.50 -28.7873 -.4709 . 0027 8946, 41 11009. 14 36465, 43 2.432
Formula 5-5
.03125 -28.7876 -.4743 .0027 8950.43 11009. 00 36465.65 42.697
.0625 -28.7876 -.4741 . 0027 8950.10 11009. 02 36465.75 21.431
.125 -28.7876 -, 4740 . 0027 8950. 11 11009. 06 36465. 75 10.820
.25 -28.7875 -.4732 . 0027 8949. 16 11009. 05 36465.65 5.663
.50 -28.7873 ~-. 4719 . 0027 8947.76 11008. 96 36465. 74 3.185

* Actual computer time used for computing the first 90 seconds of the trajectory. This number does not
include time used in loading deck or reading data.




Table 2. Solution of Trajectory at 80 Seconds

Step-Size XS s z8 Time™ (min
p %o 9y ¢, b v, 0 (min)

Formula 4-3

.03125 -38. 7233 ~-16.5128 -12.4525 12180.78 12036.13 42546.21 23.646
. 0625 -38.7237 -16.5187 -12.4552 12180.74 12036.11 42546.19 12,066
.125 -38.7233 -16.5169 -12.4545 12180.19 12036.18 42546.11 6.306
.25 -38.7158 -16. 4344 -12.4212 12181.15 12036.22 42546. 14 3. 321
.50 -39.0284 -18.5710 -12.8615 12177.08 12031.53 42545, 32 2.005

Runge-Kutta Formula

. 03125 -38. 7211 -16.5001 -12.4479 12180.36 12036.18 42546.18 30.814
. 0625 -38.7266 ~16. 5366 -12.4628 12180.38 12036. 11 42546.15 15.650
.125 ~38.7215 -16.4964 -12. 4460 12180.17 12036. 24 42546.10 8.075
.25 -38.7129 -16.3931 -12.4018 12181.32 12036. 36 42546.13 4,258
.50 -38. 9201 -17.8007 -12.7405 12177.60 12032, 99 42545.28 2.432

Formula 5-5

. 03125 -38.6932 -16.2973 -12.3574 12184.00 12036.10 42546. 09 42.697
. 0625 -38.6962 -16.3158 -12.3661 12183.63 12036.12 42546.23 21.431
.125 ~38.6922 -16.2869 -12.3540 12183.64 12036.23 42546, 25 10.820
.25 -38.6869 -16.2431 -12.3358 12182.59 12036. 48 42546.14 5.663
.50 -38. 6550 -15. 9663 -12.1963 12181.28 12037, 31 42546.33 3.185

€8

* Actual computer time used for computing the first 90 seconds of the trajectory. This number does not
include the time used in loading the deck or reading data.
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Table 3. Solution of Trajectory at 90 Seconds

Step-Size XS S zs Time™ (min
p Yy wy @, b v b b ( )
Formula 4-3
. 03125 -44. 9268 15.9817 7.6516 15575.30 12678. 83 49598.65 23.646
. 0625 -44.9276 16.0061 7.6691 15575. 20 12678. 51 49598. 58 12. 066
.125 -44, 9273 15.9925 7.6596 15574.61 12678.68 49598. 49 6.306
.25 -44,. 9169 15.6544 7.4057 15576. 48 12682, 91 49599. 23 3.321
.50 -44, 3560 19. 4485 9. 7651 15545. 42 12518. 26 49581.74 2.005
Runge-Kutta Formula
. 03125 -44.9252 15.9302 7.6136 15574, 95 12679.55 49598.69 30.814
. 0625 -44,9300 16.0834 7.7227 15574.63 12677.58 49598.39 15.650
.125 -44, 9254 15.9176 7.6010 15574.76 12679. 82 49598.62 8.075
.25 -44, 9133 15.5145 7.2618 15577, 00 12685.16 49599, 52 4,258
.50 ~-44. 8984 20.0205 9. 9560 15557. 96 12592. 42 49587. 85 2.432
Formula 5-5
.03125 -44, 8996 15.0857 6.8810 15580.62 12689.61 49600.12 42.697
. 0625 -44, 9021 15.1658 6.9562 15580.09 12688.74 49600. 16 21.431
. 125 -44, 8990 15.0514 6.8434 15580. 31 12690.27 49600. 40 10.820
.25 -44. 8951 14,8850 6.6719 15579.45 12692. 71 49600. 52 5.663
.50 -44, 8646 13.8237 5.8255 15580.10 12706.29 49602.60 3.185

* Actual computer time used for computing the first 90 seconds of the trajectory. This number does not
include the time used in loading the deck or reading data.
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Tolerance Number

Table 4. One-Sigma Data Tolerances

Tolerance

.1 degree thrust vector misalignment of each
S-IC stage engine in the same direction

. 3 percent variation of the total thrust magnitude
of the S-IC stage engines

2/3 inch lateral deviation of the predicted
location of the missile center-of-gravity

2/3 meter variation of the predicted aerodynamic
center-of-pressure

2 percent variation of the predicted aerodynamic
normal force coefficient CN

3.33 percent variation of the predicted
aerodynamic drag coefficient Cd

2722 kilogram variation in the predicted initial
mass of the missile
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Table 5. Effects of One-Sigma Data Tolerances on Solution of Trajectory at 70 Seconds
Tolerance™ %) ) ) XS ys z8
r

Number P y P P b
+1 -28.7017 . 3893 .0031 8949. 35 11054.09 36401. 81
-1 -28.8730 . 5559 .0022 8944.70 10964. 07 36529. 69
+2 -28.8044 . 5687 . 0029 9062. 40 11007. 56 36479.13
-2 -28.7734 . 3990 . 0033 8831.88 11010.71 36452. 34
+3 -28.8178 . 4992 . 0347 8945. 35 10974. 86 36514, 07
-3 -28.7569 . 4461 . 0400 8948. 84 11043. 34 36417.43
+4 -28.7886 . 4015 . 0032 8947.15 11013.52 36465.78
-4 -28.7860 . 5442 . 0022 8947.22 11004, 87 36465.68
+5 -28.7874 . 4647 . 0027 8947.17 11010.91 36465.73
-5 -28.7871 . 4803 . 0028 8947.20 11007. 46 36465. 73
+6 -28.7895 . 4849 . 0027 8962.74 11008. 95 36467, 89
-6 -28.7852 . 4613 . 0028 8933. 03 11009. 34 36463. 56
+7 -28.7925 . 4997 . 0026 8983. 45 11008. 58 36470.28
=7 -28.7824 . 4473 . 0029 8910. 99 11009.76 36461.20

* The tolerances are defined by Table 4. A positive tolerance number indicates that the tolerance was applied

in the most helpful way; a negative tolerance number indicates that the tolerance was applied in the most
harmful way.



Table 6. Effects of One-Sigma Data Tolerances on Solution of Trajectory at 80 Seconds

Tolerance™ ) © ) Xs ys z8 -
Number P y t b b p -
%
! +1 -38.3341 -14.9379 -11.5715 12184.76 12094. 26 42468.09 %
| -1 -39.1924 -18. 3642 -12.5339 12175.13 11977.75 42624.17 -
! +2 -38.4141 - 9.7470 - 6.2857 12334.38 12040. 72 42573. 47 E
! -2 -40.1522 -26.3994 -13.3281 12025.63 12032.69 42518. 46 E
]
+3 -38.6592 -16.1072 -12.4730 12177.77 11994.18 42604. 66 =
-3 -38.8017 -16.9819 -12.3504 12182.35 12077. 95 42487, 61 i
+4 -38.1799 - 9.4252 - 5.8506 12185.03 12057. 55 42546 . 86
-4 -41.5404 ~-32.0683 -13.3339 - 12172.33 12010.78 42544.29
+5 -38. 3416 -13.8243 -10.6210 12181.95 12043. 89 42546.19
-5 -39. 3255 -20.0300 -12,.8337 12178. 20 12028.17 42545, 95
+6 -38. 5942 -15.3986 -11.9084 12203.54 12036. 76 42551.62
-6 -38.7556 -16.9253 -12.6127 12159.15 12037. 06 42540. 83 I
+7 -38. 4446 -14.0336 -10.8898 12229.68 12037. 04 42555.64 %
=7 -39. 0920 -19.2638 -12,8763 12130. 81 12035. 54 42536, 59 =
% The tolerances are defined by Table 4. A positive tolerance number indicates that the tolerance was applied E
in the most helpful way; a negative tolerance number indicates that the tolerance was applied in the most s

harmful way.
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Table 7. Effects of One-Sigma Data Tolerances on Solution of Trajectory at 90 Seconds
Tolerance™ ® ® ¢, X8 ysp z8,
Number b y .
+1 -44,7510 10.3892 4,.7007 15592. 16 12816.49 49514, 55
-1 ~44.2339 18.2383 9.0583 15543.26 12455, 62° 49678. 34
+2 -44.1665 2.7922 . 9414 15798.29 12862. 91 49682. 44
-2 -42.7376 -37.5092 -407.550 14636. 99 12306. 83 48931.55
+3 -44.9339 14.5655 6.7857 15574. 91 12647.18 49699. 56
-3 -44.9066 17.6410 8.1382 15573. 06 12704. 55 49526. 97
+4 -44.1551 1.9187 . 5546 15614.33 12890. 09 49635. 84
-4 -50.6667 -46. 7982 -466.011 14696. 97 12333. 00 48871.173
+5 -44.6586 8.0330 3.5145 155693.61 12787.78 49614, 93
-5 -209. 788 -17.8573 ~289.193 15343.07 12191.16 49450.16
+6 -44. 8128 11.8636 5.6754 15614. 90 12727. 34 49616. 93
-6 -44.9548 17.4259 8.4833 15541.61 12659, 01 49584. 86
+7 -44.6642 8.8958 3. 9456 15652, 43 12771.53 49630. 58
-7 -42.6074 10.6717 5.3222 15463. 93 12418.64 49556, 72

e

harmful way.

The tolerances are defined by Table 4. A positive tolerance number indicates that the tolerance was applied
in the most helpful way; a negative tolerance number indicates that the tolerance was applied in the most




Table 8. Integration Error Percentages

Maximum Percentage
of

Parameter Integration Error
XSp .38x 1072
dX _/dt .12 x 10°
YSp .29x 1072
dy _/dt .22 x 10°
ZSp .12 x 1072
dZS/dt .28 x 100
w .43 x 1ot

X
w .19 x 10t

y
w .20 x 10t

Z

.93 x 1072

“p
.77 % 10°

Yy
0
@, .82x%x 10
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Table 9. Formula 4-3 Solution of Trajectory with Variable Step-Size

gfr?: C<t§§cy> %o %y Or p Ysp “o Tci?nnelp(u Itlfil;l)
70 -28.7874 ~ 4726 L0027 8947.90 11009.12  36465.63
80 -38.7193 -16. 4557 12,4490  12181.17 12036.17 42546, 04
90 ~44.9181 15.7993 7.5117  15576.26 12681.74  49598. 98 2.466*

* Actual computer time used for computing the first 90 seconds of the trajectory. This number does not
include time used in loading deck or reading data.
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